
Journal of Geometry and Physics 56 (2006) 271–281

A generalized positive energy theorem for spaces
with asymptotic SUSY compactification

Naqing Xie

Institute of Mathematics, Fudan University, Shanghai 200433, PR China

Received 27 July 2004; received in revised form 24 January 2005; accepted 1 February 2005
Available online 25 February 2005

Abstract

In this short note, we prove a generalized positive energy theorem for spaces with asymptotic
SUSY compactification involving non-symmetric data. This work is motivated by the work of Dai
[A positive mass theorem for spaces with asymptotic SUSY compactification, Comm. Math. Phys.
244 (2004) 335–345; A note on positive energy theorem for spaces with asymptotic SUSY com-
pactification, 2004. arXiv:math-ph/0406006], Hertog–Horowitz–Maeda [Negative energy density in
Calabi–Yau compactifications, JHEP 0305 (2003) 060], and Zhang [Angular momentum and positive
mass theorem, Comm. Math. Phys. 206 (1999) 137–155].
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1. Introduction and statement of the result

In 1960, Arnowitt–Deser–Misner made a detailed study of isolated gravitational systems
from the Hamiltonian point of view[1]. They discovered a conserved quantity given
precisely by an integral and they concluded that this conserved quantity is the total energy
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of this isolated system. Mathematically rigorous proof of the conjecture that the total
energy for asymptotically flat spaces is non-negative was firstly given by Schoen and Yau
[10–12]. Shortly thereafter, Witten raised a simple proof using spinors from ‘spacetime’
view [14,9]. Later, various results have been established: Bartnik[2] defined the ADM
mass for higher dimensional spin manifolds and generalized this theorem to that case;
Zhang[16] globally defined the concept of angular momentum and proved a positive mass
theorem involving this non-symmetric data which gave an answer to the 120th problem of
Yau in his problem section[15].

In string theory[3], our universe is modelled by a 10-dimensional manifold which
asymptotically approaches the product of a flat Minkowski spaceM3,1 with a compact
Calabi–Yau three-foldX. This is the so-called Calabi–Yau compactification which
motivates the spaces we discuss here. Hertog–Horowitz–Maeda constructed classical
configuration which has regions of negative energy density as seen from four-dimensional
perspective[7]. This guides us to revisit the concept of the ADM mass (or the total energy)
in string theory. A positive mass theorem for such spaces was established by Dai[4] and
its Lorentzian version was discussed in[5].

In this short note, we formulate and prove a generalized positive energy theorem for
spaces with asymptotic SUSY compactification which involves non-symmetric initial data.

We consider the complete Riemannian manifold (Mn, gab, pab) with non-symmetric data
pab. SupposeM = M0 ∪M∞ with M0 compact andM∞ � (Rk − BR(0)) ×X for some
R > 0 andX a compact simply connected Calabi–Yau manifold. We will call (Mn, gab, pab)
a space with asymptotic SUSY compactification if the metric on the endM∞ satisfies the
following asymptotic conditions

g = g̊+ h, g̊ = gRk + gX, (1.1)

h = O(r−τ),
◦∇ h = O(r−τ−1),

◦∇ ◦∇ h = O(r−τ−2), (1.2)

and

p = O(r−τ−1),
◦∇ p = O(r−τ−2), (1.3)

wherepab is an arbitrary two-tensor satisfyingpβα = pβi = piβ = 0,
◦∇ is the Levi–Civita

connection with respect to̊g, τ > 0 is the asymptotic order,r is the Euclidean distance to a
base point, and the indexα, β run over the compact factor while the indexi runs over the
Euclidean part.

For such a space (Mn, gab, pab), the total energy is defined as

E = lim
R→∞

1

4ωk vol(X)

∫
SR×X

(∂igij − ∂jgaa) ∗ dxj d vol(X), (1.4)

and the total momentum is defined as

Pk = lim
R→∞

1

4ωk vol(X)

∫
SR×X

2(pkj − δkjpii) ∗ dxj d vol(X). (1.5)

Here the∗ operator is the one on the Euclidean factor, the indexi, j run over the Euclidean
factor while the indexa, b run over the full index of the manifold.
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We say that (Mn, gab, pab) satisfies the dominant energy condition if

µ ≥ max



√∑

a

(ωa)2,

√∑
a

(ωa + χa)2


+

√ ∑
1≤a≤n−3

κ2
a. (1.6)

Here, local energy density is defined as

µ = 1

2


R+

(∑
a

paa

)2

−
∑
a,b

p2
ab


 , (1.7)

whereR is the scalar curvature, and local momentum densities are defined as

ωa =
∑
b

(∇bpab − ∇apbb), (1.8)

χa = 2
∑
b

∇bp̃ba, (1.9)

κ2
a =

∑
b,c,d;c>d>b>a

(p̃abp̃cd + p̃acp̃db + p̃adp̃bc)
2, (1.10)

wherep̃ab = pab − pba.
Our main result is the following theorem.

Main theorem. Let (Mn, gab, pab) be a complete spin manifold as above and the asymptotic
order τ > (k − 2)/2 and k ≥ 3. If (Mn, gab, pab) satisfies the dominant energy condition
(1.6), then one has

E ≥ |P |. (1.11)

Moreover, if E = 0 and k = n, then the following equation holds on M∑
c<d

(Rabcd + pacpbd − padpbc)e
ced − √−1

∑
c

(∇apbc−∇bpac)ec

= − √−1


 ∑
c,d;a �=c �=d �=b �=a

∇apcdebeced −
∑

c,d;a �=c �=d �=b �=a
∇bpcdeaeced




−

 ∑
f,c,d;a �=f �=c �=d �=b �=a

pcdpaf e
bef eced −

∑
f,c,d;a �=f �=c �=d �=b �=a

pcdpbf e
aef eced




(1.12)

as an endomorphism of the spinor bundle S, where Rabcd is the Riemann curvature tensor
of the manifold (Mn, gab, pab).

Remarks.

1. This theorem extends without change to the case ofX with any other special holonomy
exceptSp(m) · SP(1).
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2. In particular, if the datapab is symmetric, then this theorem reduces to the result in[5].
3. This theorem corresponds to the result in[16] in the asymptotically flat case.

2. The Bochner–Lichnerowicz–Weitzenbock formula

Our argument is inspired by Witten[14,9]. We will adapt the spinor method[16,4,5]to
our situation. The crucial point is that we use the Dirac-Witten operatorD̃ which is defined
in [16]. Our positive energy theorem is a consequence of a nice generalized Bochner–
Lichnerowicz–Weitzenbock formula.

Fix a pointp ∈ M and an orthonormal basis{ea} of TpM such that (∇aeb)p = 0, where
∇ is the Levi–Civita connection ofM. Let {ea} be the dual frame. LetS be the spinor bundle
of M with Hermitian metric〈·, ·〉. The connection∇ of M induces a connection onS. Define
the modified connections̃∇ and∇̄ on S as

∇̃a = ∇a +
√−1

2

∑
b

pabe
b, (2.1)

∇̄a = ∇a +
√−1

2

∑
b

pabe
b −

√−1

2

∑
b,c;a �=b �=c �=a

pbce
aebec. (2.2)

Then the Dirac operatorD and the Dirac-Witten operator̃D are defined as

D =
∑
a

ea∇a, (2.3)

D̃ =
∑
a

ea∇̃a, (2.4)

respectively. Moreover, we have the following formulae:

d(〈φ,ψ〉int(ea)d vol)=
(

〈∇̃aφ, ψ〉+
〈
φ,

(
∇̃a−

√−1
∑
b

pabe
b

)
ψ

〉)
d vol (2.5)

=
(

〈∇̄aφ, ψ〉 +
〈
φ,

(
∇̄a − √−1

∑
b

pabe
b

)
ψ

〉)
d vol, (2.6)

d(〈eaφ,ψ〉int(ea)d vol)=
(

〈D̃φ,ψ〉−
〈
φ,

(
D̃+ √−1

∑
a

paa

)
ψ

〉)
d vol. (2.7)

We denote the adjoint operators by

∇̃∗
a = −∇̃a + √−1

∑
b

pabe
b, (2.8)

∇̄∗
a = −∇̄a + √−1

∑
b

pabe
b, (2.9)
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D̃∗ = D̃+ √−1
∑
a

paa. (2.10)

Now we recall two nice formulae in[16].

Proposition 2.1. One has

D̃∗D̃ = ∇̄∗∇̄ + 1

2

(
µ+ √−1

∑
b

ωbe
b

)
+ 1

2
F, (2.11)

D̃D̃∗ = ∇̄∇̄∗ + 1

2

(
µ− √−1

∑
b

(ωb + χb)e
b

)
− 1

2
F, (2.12)

where F =∑a �=b �=c �=d �=a pabpcdeaebeced .

We are going to derive the integral form of the generalized Bochner–Lichnerowicz–
Weitzenbock formula.

Lemma 2.1. One has∫
∂M

〈φ, ∇̄aφ + eaD̃φ〉int(ea)d vol(g)

=
∫
M

|∇̄φ|2+1

2

〈
φ,

(
µ+√−1

∑
a

ωae
a

)
φ

〉
+
∫
M

1

2
〈φ,Fφ〉−|D̃φ|2. (2.13)

Proof. By (2.11),

RHS=
∫
M

|∇̄φ|2 + 〈φ, D̃∗D̃φ〉 − |D̃φ|2 − 〈φ,∇∗∇̄φ〉

=
∫
∂M

〈φ, ∇̄aφ〉int(ea)d vol(g) −
∫
∂M

〈eaφ, D̃φ〉int(ea)d vol(g) = LHS.

3. Manifolds with parallel spinors

Recall that the spin manifoldM = M0 ∪M∞ with M0 compact andM∞ � (Rk −
BR(0)) ×X for someR > 0. Sincek ≥ 3 andX is simply connected, the endM∞ is also
simply connected and therefore has a unique spin structure which comes from the product of
the restriction of the spin structure onRk and the spin structure onX. One has the following
result in[13].

Proposition 3.1. Let (M,g) be a complete, simply connected, irreducible Riemannian spin
manifold and N be the dimension of parallel spinors. ThenN > 0 if and only if the holonomy
group of M is one of SU(m), Sp(m), Spin(7),G2.



276 N. Xie / Journal of Geometry and Physics 56 (2006) 271–281

Remark. In physics language, manifolds with parallel spinors are said to be supersymmetric
(SUSY).

We denote by{e0
a} the orthonormal basis of̊g which consists of∂/∂xi followed by an

orthonormal basis{fα} of gX. Orthonormaling the orthonormal frame{e0
a} with respect to

g̊ yields an orthonormal frame{ea} with respect tog. Moreover,

ea = e0
a − 1

2habe
0
b +O(r−2τ). (3.1)

This provides a gauge transformationA of the tangent bundles on the endM∞:

A : SO(g̊) → SO(g),

e0
a �→ ea.

Hence it induces a map from the spinor bundles.

Now we pick a unit norm parallel spinorψ0 of (Rk, gRk ) and a unit parallel spinorψ1
of (X, gX). Thenφ0 = A(ψ0 ⊗ ψ1) defines a spinor ofM∞. We extendφ0 smoothly inside
and note that

∇φ0 = O(r−τ−1) (3.2)

which is a consequence of an asymptotic formula in[4].

4. Fibred boundary calculus and the Dirac-Witten equation

In this section, we will use the fibred boundary calculus of Melrose–Mazzeo[8] to solve
the Dirac-Witten equation. The argument is following Dai’s[4].

Let M̄ be a smooth compact manifold with boundary and suppose thatx is a boundary
defining function such thatx vanishes on∂M̄ and dx �= 0 there. Assume further that the
boundary∂M̄ comes with a fibration structureF → ∂M̄

π→B with fiberF. Then the metric
g is called a fibred boundary metric if in a neighborhood of the boundary∂M̄, the metricg
takes the form

g = dx2

x4 + π∗(gB)

x2 + gF, (4.1)

wheregB is a metric on the base B andgF is a family of fiberwise metrics.
In the setting of spaces with asymptotic SUSY compactification, the change of variable

x = 1/r gives a trivial fibrationSk−1 ×X.
Sometimes we use the notationM andM̄ interchangeably. For a manifold with boundary,

we introduce two Lie algebras of vector fields:

• b-vector fields

Vb(M) := {V |V tangent to the boudnary∂M}, (4.2)

• fibred boundary vector fields

Vfb(M) := {V ∈ Vb(M)|V tangent to the fiberF at∂M, Vx = O(x2)}. (4.3)
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The Sobolev spaceLp,2(M,S) is defined as

Lp,2(M,S) := {φ ∈ L2(M,S)|∇V1 · · · ∇Vjφ ∈ L2(M,S),∀j ≤ p, Vi ∈ Vb(M)}.
(4.4)

Let γ ∈ R and we define the space of conormal sections of orderγ by

Aγ (M,S) := {φ ∈ C∞(M,S)|∇V1 · · · ∇Vjφ| ≤ Cxγ, ∀j, Vi ∈ Vb(M)}, (4.5)

and the subspace of polyhomogeneous sections by

A∗
phg(M,S)

:=

φ ∈ A∗(M,S)|φ ∼

∑
Reγj→∞

Nj∑
k=0

ψjkx
γj (log x)k, ψjk ∈ C∞(∂M, S)


 .

(4.6)

These expansions are meant in the usual asymptotic sense asx → 0 and hold along with all
derivatives. The superscript∗ may be replaced by an index setI containing all pairs (γj,Nj)
which appear in this expansion.

Denote by0 : L2(M,S) → KerDF the natural orthogonal projector and letΠ⊥ :=
Id −Π0.

The following proposition is a summary of the results in[6] (see also[4], Theorem 3.1).

Proposition 4.1. Suppose thata is not an indicial root ofΠ0x
−1DΠ0. Then

D : xaL1,2(M,S) → xa+1Π0L
2(M,S) ⊕ xaΠ⊥L2(M,S)

is Fredholm. If Dφ = 0 for φ ∈ xaL2(M,S), then φ is polyhomogeneous with exponents
in its expansion determined by the indicial roots of Π0x

−1DΠ0 and truncated at a. If
Dξ = ψ forψ ∈ Aa(M,S) and ξ ∈ xc−1Π0L

1,2(M,S) ⊕ xcΠ⊥L1,2(M,S) and c < a, then
ξ ∈ Π0A

I
phg(M,S) +Aa(M,S).

Remarks.

1. Strictly speaking, only the metric̊g is a fibred boundary metric. However, it is easy to
see that the results generalize to the metricg (see[4]). The metric perturbation produces
only a lower order term.

2. In our situation, note that̃D = D+ (
√−1/2)

∑
a,b pabe

aeb = D+O(r−τ−1). It follows
from the decay condition of the initial datapab that the Dirac-Witten operator̃D is also
a Fredholm operator fromxaL1,2(M,S) to xa+10L

2(M,S) ⊕ xaΠ⊥L2(M,S).
3. The precise forms of these results for the Dirac-Witten operatorsD̃ andD̃∗ are somewhat

different, but one still has the regularity property.
4. For the precise definition of the indicial root, we refer to[8,6]. For our purpose, we only

note that the set of indicial roots is discrete.
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To prove that the Dirac-Witten operatorD̃ is an isomorphism under certain conditions,
we need the following lemma inspired by[9,16].

Lemma 4.1. Suppose (Mn, gab, pab) is a complete spin manifold as above and the spinor
φ satisfying either ∇̄φ = 0 or ∇̄∗φ = 0. If limr→∞ φ = 0, then φ = 0.

Proof. By the assumptions, we have|d|φ|2| = 2|〈Re∇φ, φ〉| ≤ C|p||φ|2, whereC is some
constant. This implies|d log |φ|| ≤ Cr−τ−1 outside a compact set. Fix a point (r0, y0) and
integrate along a path from (r0, y0) with respect tor. Then one has

|φ(r, y0)| ≥ |φ(r0, y0)|eC(r−τ0 −r−τ ).

Taking r → ∞ or taking (r, y0) to be the zero ofφ, we getφ(r0, y0) = 0. Henceφ = 0
whenr is large enough. It follows from the unique continuation property thatφ = 0 since
φ satisfies the Dirac-Witten equation. We complete the proof of this lemma.

Lemma 4.2. If the dominant energy condition (1.6) holds and a > (k − 2)/2 is not an
indicial root, then

D̃ : xaL1,2(M,S) → xa+1Π0L
2(M,S) ⊕ xaΠ⊥L2(M,S)

is an isomorphism.

Proof. The argument here is similar to Dai’s (see[4, Section 3]). We first see that̃D is
injective. Ifφ ∈ Ker D̃ ⊂ xaL1,2(M,S), then by elliptic regularity,φ ∈ Aaphg(M,S). By the
Weitzenbock formula(2.13)∫

Ω

{
|∇̄φ|2 + 1

2

〈
φ,

(
µ+ √−1

∑
a

ωae
a

)
φ

〉
+ 1

2
〈φ,Fφ〉

}
d vol

=
∫
∂Ω

〈φ, ∇̄aφ + eaD̃φ〉int(ea)d vol.

By takingΩ so that∂Ω = Sr ×X andr → ∞ we see that the right hand side of the above
equality tends to zero sinceφ ∈ Aaphg(M,S) anda > (k − 2)/2. It follows from the dominant
energy condition(1.6) that∇̄φ = 0 and henceφ = 0 byLemma 4.1.

The same argument as above applies to the adjoint operatorD̃∗. By the Fredholm property,
the surjectivity ofD̃ follows from the injectivity ofD̃∗ which is a consequence of the
Weitzenbock formula(2.12)as well asLemma 4.1. This proves the lemma.

Now we are ready to solve the Dirac-Witten equation.

Lemma 4.3. There exists a smooth spinor φ such that D̃φ = 0 and φ = φ0 +O(r−τ).

Proof. We construct the wanted spinor by settingφ = φ0 + ξ and solveD̃ξ = −D̃φ0 =
O(r−τ−1). By Lemma 4.2, adjustingτ slightly if necessary so that it is not one of the indicial
root, we have a solutionξ = O(r−τ).
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5. Proof of the main theorem

Lemma 5.1. If a spinor φ is asymptotic to φ0 : φ = φ0 +O(r−τ), then one has

lim
R→∞

∫
SR×X

〈φ, ∇̄aφ + eaD̃φ〉int(ea)d vol(g) = ωk vol(X)〈φ0, Eφ0 + √−1Pi dx
iφ0〉.

(5.1)

Proof.∫
SR×X

〈φ, ∇̄aφ + eaD̃φ〉int(ea)d vol(g)

=
∫
SR×X

〈
φ,∇a +

√−1

2

∑
b

pabe
b −

√−1

2

∑
b,c;a �=b �=c �=a

pbce
aebecφ

〉
int(ea)d vol(g)

+
∫
SR×X

〈
φ, ea

∑
b

eb

(
∇b +

√−1

2

∑
c

pbce
c

)
φ

〉
int(ea)d vol(g),

=
∫
SR×X

〈φ,∇aφ + eaDφ〉int(ea)d vol(X)

+
∫
SR×X

〈
φ,

√−1

2


∑

b

pabe
b −

∑
b,c;a �=b �=c �=a

pbce
aebec +

∑
b,c

pbce
aebec


φ

〉

× int(ea)d vol(g). (5.2)

The first term in(5.2)is computed in[4] which tends toωk vol(X) < φ0, Eφ0 > asr → ∞.

The second term is∫
SR×X

〈
φ,

√−1

2


∑

b

pabe
b +


 ∑
a=b;b �=c

+
∑

a=c;b �=c
+
∑
b=c


pbceaebec


φ

〉

× int(ea)d vol(g)

=
∫
SR×X

〈
φ,

√−1

2


∑

b

pabe
b +

∑
b �=a

pabe
aeaeb +

∑
b �=a

pbae
aebea

+
∑
b

pbbe
aebeb

)
φ

〉
int(ea)d vol(g)

=
∫
SR×X

〈
φ,

√−1

2


∑

b

pabe
b −

∑
b �=a

pabe
b +

∑
b �=a

pbae
b −

∑
c

pcce
a


φ

〉

× int(ea)d vol(g)
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=
∫
SR×X

〈
φ,

√−1

2

(∑
b

pbae
b − δbapcce

b

)
φ

〉
int(ea)d vol(g)

which goes toωk vol(X)〈φ0,
√−1Pi dxiφ0〉 asr → ∞.

Proof of the main theorem. Now we are ready to prove our main result. Note that√−1Pi dxi has eigenvalues±|P |. We takeφ0 as the unit eigenspinor of eigenvalue−|P |.
It follows from the Weitzenbock formula(2.13)that

E ≥ |P |.

The proof of the second part is the same as in[16].
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