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Abstract

In this short note, we prove a generalized positive energy theorem for spaces with asymptotic
SUSY compactification involving non-symmetric data. This work is motivated by the work of Dai
[A positive mass theorem for spaces with asymptotic SUSY compactification, Comm. Math. Phys.
244 (2004) 335-345; A note on positive energy theorem for spaces with asymptotic SUSY com-
pactification, 2004. arXiv:math-ph/0406006], Hertog—Horowitz—Maeda [Negative energy density in
Calabi—-Yau compactifications, JHEP 0305 (2003) 060], and Zhang [Angular momentum and positive
mass theorem, Comm. Math. Phys. 206 (1999) 137-155].
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1. Introduction and statement of the result
In 1960, Arnowitt—Deser—Misner made a detailed study of isolated gravitational systems

from the Hamiltonian point of view1]. They discovered a conserved quantity given
precisely by an integral and they concluded that this conserved quantity is the total energy
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of this isolated system. Mathematically rigorous proof of the conjecture that the total
energy for asymptotically flat spaces is non-negative was firstly given by Schoen and Yau
[10-12] Shortly thereafter, Witten raised a simple proof using spinors from ‘spacetime’
view [14,9]. Later, various results have been established: Baf&jildefined the ADM

mass for higher dimensional spin manifolds and generalized this theorem to that case;
Zhang[16] globally defined the concept of angular momentum and proved a positive mass
theorem involving this non-symmetric data which gave an answer to the 120th problem of
Yau in his problem sectiofi5].

In string theory[3], our universe is modelled by a 10-dimensional manifold which
asymptotically approaches the product of a flat Minkowski speée with a compact
Calabi-Yau three-foldX. This is the so-called Calabi—Yau compactification which
motivates the spaces we discuss here. Hertog—Horowitz—Maeda constructed classical
configuration which has regions of negative energy density as seen from four-dimensional
perspectivg7]. This guides us to revisit the concept of the ADM mass (or the total energy)
in string theory. A positive mass theorem for such spaces was established ] Bad
its Lorentzian version was discussed%.

In this short note, we formulate and prove a generalized positive energy theorem for
spaces with asymptotic SUSY compactification which involves non-symmetric initial data.

We consider the complete Riemannian manifaltf ( g.», pap») With non-symmetric data
Pab- SUPPOSEV = Mo U M., with Mo compact and, ~ (R¥ — B(0)) x X for some
R > 0andX a compact simply connected Calabi—Yau manifold. We will c&f ( g.», pas)

a space with asymptotic SUSY compactification if the metric on theMgdsatisfies the
following asymptotic conditions

g=g+h, g = gpr + &x. (1.1)

h=00"7), Vh=00""Y,  VVh=o0("T"3), (1.2)
and

p=00""Y, vp=o0GT?), (1.3)

wherep,; is an arbitrary two-tensor satisfying, = ps = pig =0, % is the Levi—Civita
connection with respect t@ = > 0 is the asymptotic order,is the Euclidean distance to a
base point, and the index 8 run over the compact factor while the indesuns over the
Euclidean part.

For such a space”, gu», pab), the total energy is defined as

1
RI—>oo4wkvol(X) stx( i8ij — 88aa) * dx; d vOI(X) (1.4)

and the total momentum is defined as

P, = 2(prj — 8kjpii) * dx; dvol(X). (1.5)

im ———
R—o00 4wy, VOl(X) JSpxX

Here thex operator is the one on the Euclidean factor, the ind¢xun over the Euclidean
factor while the indexs, b run over the full index of the manifold.
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We say that ", g.», pap) Satisfies the dominant energy condition if

pzmaxy [ @R D@ty [ D K (1.6)
a a 1<a<n—3

Here, local energy density is defined as

2
1
p=5 R+ (Zpaa> - ph |- (1.7)
a a,b

whereR is the scalar curvature, and local momentum densities are defined as

wa = Z(prab — Vapbp), (1.8)
b
Xa = ZZ Vbi?bav (19)
b
ko= > (Pavbed + Pachab + PadPbe)?. (1.10)

b,c,d,c>d>b>a
wherepa, = pab — Pra-
Our main result is the following theorem.

Main theorem. Let (M", gup, pap) be a complete spin manifold as above and the asymptotic
order T > (k — 2)/2 and k > 3. If (M", gap, pab) satisfies the dominant energy condition
(1.6), then one has

E > |P|. (1.112)
Moreover, if E = 0 and k = n, then the following equation holds on M

Z(Rabcd + PacPbd — padpbc)eced - _1Z(Vapbc_vbpac)ec

c<d c
= —4-1 Z Vapcdebe”ed - Z prcde”eced
c,d;a#c#d#b#a c,dja#c#d#b#a
- Z Pcdpafehefeced - Z pcdpbfeaefeced
fe.dia# f#cFd#bFa fe.dia# f#cFd#bFa
(1.12)

as an endomorphism of the spinor bundle S, where Rgpcq is the Riemann curvature tensor
of the manifold (M", gapb, Pab)-

Remarks.

1. This theorem extends without change to the caséwith any other special holonomy
exceptSp(m) - SP(1).
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2. In particular, if the data,,, is symmetric, then this theorem reduces to the resui]in
3. This theorem corresponds to the resultli] in the asymptotically flat case.

2. The Bochner-Lichnerowicz—Weitzenbock formula

Our argument is inspired by Wittdt4,9]. We will adapt the spinor methdd6,4,5]to
our situation. The crucial point is that we use the Dirac-Witten operatohich is defined
in [16]. Our positive energy theorem is a consequence of a nice generalized Bochner—
Lichnerowicz—Weitzenbock formula.
Fix a pointp € M and an orthonormal basfg,} of T, M such that ¥,e;), = 0, where
V is the Levi—Civita connection dif. Let {¢} be the dual frame. Letbe the spinor bundle
of M with Hermitian metrig(-, -). The connectioV of M induces a connection d&h Define
the modified connectiong andV on S as

~ V-1

Va=Vat —— Zb:pabe”, (2.1)

_ V=1 V-1 :

V.=V, + — Z pabeb -5 | Z pbce“ebe‘. (2.2)
b b,ca#b#c#a

Then the Dirac operatdp and the Dirac-Witten operatdp are defined as

D= Z 'V, (2.3)
a

D=> ¢V, (2.4)
a
respectively. Moreover, we have the following formulae:

d(($, ¥)int(e?)d vol)= ((%qb, v)+ <¢, (%H—J—_lz pabeb) w>> dvol (2.5)
b

= <<€a¢, )+ <¢, (% —V=1)° pabeb> w>> dvol, (2.6)
b

d((e“¢, ¥)int(e?)d vol)= <<Z)¢, W) — <¢, <D +V/=1 paa> 1/f>> dvol. (2.7)

We denote the adjoint operators by

b

6: = —ﬁ, + «/—12 pabeb, (2.9)
b



N. Xie / Journal of Geometry and Physics 56 (2006) 271-281 275
D*=D+~V-1> paa (2.10)
a
Now we recall two nice formulae if16].

Proposition 2.1. One has

Y == 1 1

DD=v*'vV4:Z (M + «/—1Zwbeh> + ZF, (2.11)
2 - 2

™ ¥ o * 1 b 1

DD* =VV* + = | = V=1 (@b + xp)e” | = SF. (2.12)
2 - 2

where F =73 sezdta PabPeae’eeel.

We are going to derive the integral form of the generalized Bochner—Lichnerowicz—
Weitzenbock formula.

Lemma 2.1. One has

/ (. Vo + ¢ De)int(e*)d vol(g)

oM
_ < .12 1 — a } D42
—/M|V¢| +§ <¢>, <M+v 1 Ea wa€>¢>>+/Mz(¢~7'—¢> [D¢|“.  (2.13)

Proof. By (2.11)
RHS = /M IVo[? + (¢, D* D) — | Dg|? — (¢, V' V)

= / (¢, Vaop)int(e®)d vol(g) — / ("¢, Dg)int(e“)d vol(g) = LHS.
oM oM

3. Manifolds with parallel spinors

Recall that the spin manifoldf = Mo U My, with Mg compact andMy, ~ (R —
Bg(0)) x X for someR > 0. Sincek > 3 andX is simply connected, the end, is also
simply connected and therefore has a unique spin structure which comes from the product of
the restriction of the spin structure &4 and the spin structure ofi One has the following
result in[13].

Proposition 3.1. Let (M, g) be a complete, simply connected, irreducible Riemannian spin
manifold and N be the dimension of parallel spinors. Then N > Q if and only if the holonomy
group of M is one of SU(m), Sp(m), Spin(7), G».
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Remark. In physics language, manifolds with parallel spinors are said to be supersymmetric
(SUSY).

We denote b){eg} the orthonormal basis @f which consists oB/ax’ followed by an
orthonormal basi$f,} of gx. Orthonormaling the orthonormal franged} with respect to
g yields an orthonormal framg,} with respect tgg. Moreover,

ey = eg — %habeg + o(r—%). (3.1)
This provides a gauge transformatigdnof the tangent bundles on the emtl,:
A 50(g) — SO(9),

0
e, — eq.

Hence it induces a map from the spinor bundles.

Now we pick a unit norm parallel spinafg of (R, gr«) and a unit parallel spinoy;
of (X, gx)- Thengg = A(vo ® 1) defines a spinor al/,. We extendpg smoothly inside
and note that

Vgo =001 (3.2)

which is a consequence of an asymptotic formulptin

4. Fibred boundary calculus and the Dirac-Witten equation

In this section, we will use the fibred boundary calculus of Melrose—Maj8}eo solve
the Dirac-Witten equation. The argument is following D§#$.

Let M be a smooth compact manifold with boundary and suppose: iilsat boundary
defining function such that vanishes ordM and dc # O there. Assume further that the
boundarysM comes with a fibration structuse — 9M > B with fiber F. Then the metric
g is called a fibred boundary metric if in a neighborhood of the boundl&fythe metricg
takes the form

d®  7*(gs)
S
wheregg is a metric on the base B ang is a family of fiberwise metrics.

In the setting of spaces with asymptotic SUSY compactification, the change of variable
x = 1/r gives a trivial fibrations*—* x X.

Sometimes we use the notatithandM interchangeably. For a manifold with boundary,
we introduce two Lie algebras of vector fields:

+ gF, (4.1)

e b-vector fields
Vu(M) := {V]V tangent to the boudnady/}, 4.2)

e fibred boundary vector fields
V(M) = {V € V,(M)|V tangentto the fibeF atoM, Vx = 0(x?)}. 4.3)
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The Sobolev space”?(M, S) is defined as
LP2(M, S) = {p € LM, $)|Vy, --- Vy,¢ € LA(M, S),Vj < p, Vi € Vp(M))}.
(4.4)

Lety € R and we define the space of conormal sections of order
Ay(Mv S) = {(p € Coo(Mv S)|VV1 e Vv,¢| < nyv Vj, Vl € Vb(M)}v (45)
and the subspace of polyhomogeneous sections by

A;;hg(M» S)

Nj
={pe AMS)p~ Y > ypx¥iflog x), Y € C(M, S)

Reyj—00 k=0
(4.6)

These expansions are meant in the usual asymptotic semnse @&and hold along with all
derivatives. The superscripimay be replaced by an index $ebntaining all pairsy;, N;)
which appear in this expansion.

Denote byIlg : L2(M, S) — KerDr the natural orthogonal projector and It :=
Id — Ip.

The following proposition is a summary of the result§6h(see als¢4], Theorem 3.1).

Proposition 4.1. Suppose that is not an indicial root ofTox~1DITg. Then
D x“LY2(M, S) — x“TYToL%(M, S) @ x“IT, L?(M, S)

is Fredholm. If D¢ = O for ¢ € x*L%(M, S), then ¢ is polyhomogeneous with exponents
in its expansion determined by the indicial roots of Hox DIy and truncated at a. If
Dg =y fory € AY(M, S)and € € x*"IToLY?(M, S) @ x°I1 LY2(M, S) and ¢ < a, then
£ € MoAlho(M, S) + A“(M, S).

Remarks.

1. Strictly speaking, only the metrigis a fibred boundary metric. However, it is easy to
see that the results generalize to the met(®ee[4]). The metric perturbation produces
only a lower order term.

2. Inoursituation, notethd = D + (v=1/2) 3", , pare®e’® = D + O(r—~1). Itfollows
from the decay condition of the initial data,, that the Dirac-Witten operatdb is also
a Fredholm operator fron' LY2(M, S) to x*t1ToL3(M, S) @ x“I1, L3(M, S).

3. The precise forms of these results for the Dirac-Witten operatarsd D* are somewhat
different, but one still has the regularity property.

4. For the precise definition of the indicial root, we refef&g]. For our purpose, we only
note that the set of indicial roots is discrete.
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To prove that the Dirac-Witten operatfris an isomorphism under certain conditions,
we need the following lemma inspired E3,16].

Lemma 4.1. Suppose (M", gap, pap) is a complete spin manifold as above and the spinor
¢ satisfying either Vo = 0 or V¥*¢ = 0. If lim,_, oo ¢ = O, then ¢ = 0.

Proof. By the assumptions, we hai#i¢|?| = 2|(ReV, ¢)| < C|p||$|%, whereC is some
constant. This implieg? log |¢|| < Cr~"~! outside a compact set. Fix a poing(yo) and
integrate along a path fromg, yo) with respect to-. Then one has

16(r, y0)| = |¢(ro, yo)le¥o —" ),

Takingr — oo or taking ¢, yo) to be the zero of, we getg(ro, yo) = 0. Hencep = 0
whenr is large enough. It follows from the unique continuation property ¢hat0 since
¢ satisfies the Dirac-Witten equation. We complete the proof of this lemma.

Lemma 4.2. [f the dominant energy condition (1.6) holds and a > (k — 2)/2 is not an
indicial root, then

D xLY2(M, S) — x“TToL?(M, S) & x“IT| L?(M, S)

is an isomorphism.

Proof. The argument here is similar to Dai's (sgke Section 3]. We first see thaD is
injective. If ¢ € Ker D C x“L12(M, S), then by elliptic regularityp € A7, (M, S). By the
Weitzenbock formulg2.13)

— 1 1
/.(2 {|V¢|2+ E <¢7 <,u/+\/__1;waea> ¢> + E(d’v ]:d))} dvol

= / (¢, Vaop + “ De)int(e®)d vol.
082
By taking £2 so thatds2 = S, x X andr — oo we see that the right hand side of the above
equality tendsto zero singec Aghg(M, S)anda > (k — 2)/2. Itfollows from the dominant

energy conditior(1.6)that5¢ = 0and hence = 0 byLemma 4.1

The same argument as above applies to the adjoint opdbat@y the Fredholm property,
the surjectivity of D follows from the injectivity of D* which is a consequence of the
Weitzenbock formulg2.12)as well ad emma 4.1 This proves the lemma.

Now we are ready to solve the Dirac-Witten equation.

Lemma 4.3. There exists a smooth spinor ¢ such that D¢ = 0 and ¢ = ¢o + O(™7).

Proof. We construct the wanted spinor by settiig= ¢ + & and solveDg = — D¢y =
O(r—™"1). By Lemma 4.2adjustingr slightly if necessary so that it is not one of the indicial
root, we have a solutioh= O(r~7).
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5. Proof of the main theorem

Lemma 5.1. If a spinor ¢ is asymptotic to ¢g : ¢ = ¢o + O(r—F), then one has

Jim / (6. Vup + ¢ De)int(ea)dvol(g) = e VOI(X) (o, Edbo + ~/—LP; d' o).
=0 JSrxX
(5.1)

Proof.
/ (6. Tu + ¢ D)int(ea)d vol(g)
SrxX

V-1 V=1 .
= / <¢, Vo + - Z pave” — — Z ppeeee > int(e,)d vol(g)
SexX b b,ciatbteta

of oy (me TS ) o imtepivote

= / (¢, Va + * D)int(e,)d vol(X)
SrxX
V=1
* /SRxX <¢’ ? (Z pabeb N ] Z pbceaebec + Z pbcea6b66> ¢>
b b,c,a#b#c#a b,c
x int(eg)d vol(g). (5.2)

The first term in5.2)is computed iff4] which tends tav, vol(X) < ¢o, E¢p > asr — oo.

The second term is

/S X<¢,\/2__1 Sopae?+ | D0+ D 4D pecee’e | ¢
RX b

a=bb#c  a=c,b#c b=c
x int(e,)d vol(g)

V=1
-/, @z(ZWﬂzmwmxmww
SrxX X

b#a b#a
+ ) prete e”) ¢> int(e,)d vol(g)
b

- /S X <¢’ g (Z Pane” = Z Pabe” + Zpbaeb - chce“) ¢>
RX - a

b#a b#a

x int(e,)d vol(g)



280 N. Xie / Journal of Geometry and Physics 56 (2006) 271-281

/—1 .
= /S 95 | D2 Prac” = dnapece” | ¢ ) int(ea)d vol(g)
R><X b

which goes tav vol(X)(¢o, v/ —1P; dxi¢o) asr — oc.

Proof of the main theorem. Now we are ready to prove our main result. Note that
~/—1P; dx' has eigenvaluesg| P|. We takegg as the unit eigenspinor of eigenvalu¢P|.
It follows from the Weitzenbock formulé.13)that

E>|P|

The proof of the second part is the same a4 6.
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